(18x^3+12x^2-3x)/6x^2

Simple and best practice solution for (18x^3+12x^2-3x)/6x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (18x^3+12x^2-3x)/6x^2 equation:


x in (-oo:+oo)

x^2*((18*x^3+12*x^2-(3*x))/6) = 0

x^2*((18*x^3+12*x^2-3*x)/6) = 0

(x^2*(18*x^3+12*x^2-3*x))/6 = 0

18*x^3+12*x^2-3*x = 0

3*x*(6*x^2+4*x-1) = 0

6*x^2+4*x-1 = 0

DELTA = 4^2-(-1*4*6)

DELTA = 40

DELTA > 0

x = (40^(1/2)-4)/(2*6) or x = (-40^(1/2)-4)/(2*6)

x = (2*10^(1/2)-4)/12 or x = (-2*10^(1/2)-4)/12

3*x*(x-((-2*10^(1/2)-4)/12))*(x-((2*10^(1/2)-4)/12)) = 0

(3*x*x^2*(x-((-2*10^(1/2)-4)/12))*(x-((2*10^(1/2)-4)/12)))/6 = 0

( 3*x )

3*x = 0 // : 3

x = 0

( x-((-2*10^(1/2)-4)/12) )

x-((-2*10^(1/2)-4)/12) = 0 // + (-2*10^(1/2)-4)/12

x = (-2*10^(1/2)-4)/12

( x-((2*10^(1/2)-4)/12) )

x-((2*10^(1/2)-4)/12) = 0 // + (2*10^(1/2)-4)/12

x = (2*10^(1/2)-4)/12

( x^2 )

1*x^2 = 0 // : 1

x^2 = 0

x = 0

x in { 0, (-2*10^(1/2)-4)/12, (2*10^(1/2)-4)/12, 0 }

See similar equations:

| -3k+10=k | | (7x-7)(7x-7)= | | 4-7[6-(5-8)]= | | -2/3z=8/15 | | (9a^2-a+15)/(a+1) | | 110=0.1x^2+39 | | Ln(x-5)=0.4 | | 8n-2+4n=66-5 | | 4x=6y-6 | | 3(m+3)+2=2m+5 | | 2x-1-1=x-3-[-5+x] | | 5+d=40 | | 2x=3y+5 | | 4200/70 | | X-5+2x+y=180 | | 27=3+g | | a+16i=34 | | 9?=81 | | 3x-3+x+5+x-1=180 | | -4+f=30 | | -4y+7=-5y+9 | | 12/6=42/t | | 3y+2y+y=0 | | 5/9(1-32) | | 13-(a/6)=29 | | 10/8=t/28 | | 18=5/9(1-32) | | 2[4x-5]+11=-63 | | X-3=28 | | 13-a/6=29 | | 10+5(z-2)=-3z+1 | | 3n-6n=3n-2 |

Equations solver categories